

26th International Conference on Computer and Information Technology (ICCIT 2023)

An Attention-Based Deep Learning Approach to Knee Injury Classification from MRI Images

Authored By

Kowshik Deb Nath, A. F. M. Minhazur Rahman and Md. Ali Hossain Department of Computer Science & Engineering ¹ Rajshahi University of Engineering & Technology, Rajshahi Bangladesh

CONTENTS

INTRODUCTION

Figure 1: Taxonomy of Knee joint anatomy.

• Knee injuries are among the most common injuries in sports and physical activities.

Symptoms:

INTRODUCTION(cont'd)

Some Statistics about Knee Injury:

Figure 2: Anterior Cruciate Ligament Anatomy[2].

Figure 3: Knee injuries in Australian hospitals (1998-2018). Panel A) Population pyramid of acute injuries over 20 years for males (green) and females (purple) aged 5+; Panel B) Yearly injury frequency for both genders, projected to 2030-2031; Panel C) Yearly injury rate per 100,000 projected to 2030-2031[1].

INTRODUCTION(cont'd)

Different Kinds of Knee Injuries:

OBJECTIVES

- Get high accuracy on the detection of Knee Injury both Binary and Multi-Class Classification
- Use the Attention Based Module for accuracy improvement
- **Compare performance with other models**
- Classify MRI images:
 - □ Binary Classification ACL and NO_ACL
 - □ Multi-Class Classification ACL, PCL, MCL, Normal and FCL

RELATED WORKS

Table 1: Related works Analysis and findings

Related Works	Ref Paper[3]	Ref Paper[4]
Paper Title	A Torn ACL Mapping in Knee MRI Images Using Deep Convolution Neural Network with Inception-v3	Multi-Layered Basis Pursuit Algorithms for Classification of MR Images of Knee ACL Tear
Accuracy	99.04%	95%
Method Used	DCNN based Inception-v3	multi-layered Convolutional Sparse Coding(ML-CSC)
Drawbacks	Overfitting High Training Accuracy – 99.04% Low Testing Accuracy – 95.42%	 absence of larger labeled datasets. Total: 623 MR Images Complete tear – 205 Normal Tear – 205 Partial Tear - 213

METHODOLOGY

DATASET

We have conducted our work into two different datasets: 1. BMEII-AI RedImageNet(Dataset-1) 2. RedImage(Dataset-2)

Table 2: Ground Truth class for DataSet-1(BMEII-AI RedImageNet)

Class	Samples
ACL	569
NO ACL	452

Table 3: Ground Truth classes for DataSet-2 (RedImage)

Class	Samples
ACL	10,085
FCL	466
MCL	7,911
Normal	4,593
PCL	725

PROPOSED METHODOLOGY

Squeeze-and-Excitation Block:

• Squeeze and Excitation Network is a channel-wise attention mechanism that recalibrates each channel accordingly to create a more robust representation by enhancing the important features.

Figure 5: A Squeeze-and-Excitation Block [5].

PROPOSED METHODOLOGY(cont'd)

Squeeze and Excitation Network Detailed Diagram:

Figure 6: A detailed diagram of the Squeeze and Excitation Network with proper dimensions and the different operations.

PROPOSED METHODOLOGY(cont'd)

CNN architecture for binary and multi-class classification:

Figure 7: CNN Architecture for Binary Classification for Binary and Multi-Class Classification

PROPOSED METHODOLOGY(cont'd)

Attention-based CNN architecture for binary and multi-class classification:

Figure 8:Attention-based CNN architecture for binary and multi-class classification

RESULT ANALYSIS

Curves for Dataset-1(Binary Classification) with CNNs:

Figure 9: Various Curves for Binary Classification on Dataset-1

Test Results for Binary Classification on Dataset -1 using CNNs:

Figure 10: Testing Results for Binary Classification on Dataset-1

Classification Report for Binary Classification on Dataset -1 using CNNs:

Table 4: Test Accuracy Scores for Binary Classification

Metric	Precisoin	Recall	F1-Score	Support
Normal	0.87	0.87	0.87	45
ACL	0.89	0.89	0.89	57
Accuracy	0.88			102
Macro avg	0.88	0.88	0.88	102
Weighted avg	0.88	0.88	0.88	102

RESULT ANALYSIS

Curves for Dataset-2(Multi-Class Classification) with

Figure 11: Various Curves for Multi-Class Classification on Dataset-2

Test Results for Multi-Class Classification on Dataset -2 using CNNs:

Figure 12: Testing Results for Multi-Class Classification on Dataset-2

Classification Report for Multi-Class Classification on Dataset -2 using CNNs:

Metrics	Precision	Recall	F1-Score	Support
ACL	0.85	0.81	0.83	1009
FCL	0.66	0.74	0.70	668
MCL	0.71	0.97	0.82	792
Normal	0.86	0.75	0.80	460
PCL	0.86	0.59	0.70	855
Accuracy	0.77			3784
Macro avg	0.79	0.77	0.77	3784
Weighted avg	0.79	0.77	0.77	3784

 Table 5: Classification Report for Multi-Class Classification for Dataset -2

Curves for Dataset-1 (Binary Classification) with Attention Architecture :

Figure 13: Various Curves and Results for Binary Classification on Dataset-1

Test results for Dataset-1 (Binary Classification) with Attention Architecture :

Figure 14: Testing Results for Binary Classification on Dataset-1

Classification Report for Binary Classification on Dataset -1 using Attention Architecture:

Table 6: Test Accuracy Scores for Binary Classification(Dataset-1)

Metric	Precisoin	Recall	F1-Score	Support
ACL	1.00	1.00	1.00	1009
Normal	1.00	1.00	1.00	460
Accuracy	1.00			1469
Macro avg	1.00	1.00	1.00	1469
Weighted avg	1.00	1.00	1.00	1469

Multi-Class Classification using Attention Network Architecture

Figure 15: Accuracy, Loss, Precision, F1-Score, and AUC Curves for Multi-Class Classification on Dataset-2

Test results for Dataset-2(Multi-Class Classification) with Attention Architecture :

Figure 16: Testing Results for Multi-Class Classification on Dataset-2

Classification Report for Multi-Class Classification on Dataset -2 using Attention Architecture:

Metrics	Precision	Recall	F1-Score	Support
ACL	0.92	0.88	0.90	1009
FCL	0.91	0.88	0.90	668
MCL	0.97	0.95	0.91	792
Normal	0.95	0.97	0.96	460
PCL	0.92	0.91	0.92	855
Accuracy	0.91			3784
Macro avg	0.92	0.92	0.92	3784
Weighted avg	0.91	0.91	0.91	3784

Table 7: Classification Report for Multi-Class Classification

Figure 17: Comparison between various models for binary and multi-class classification.

CONCLUSION

- Our study used the Attention Network for knee injury classification with high accuracy.
- Our Attention Network outperformed the Inception-v3[3] model in binary and multi-class tasks.
- Attention mechanisms enhanced MRI image feature focus, improving accuracy.
- Deep learning, especially custom architectures, can transform diagnostic procedures.

FUTURE WORK

- We plan to add diverse MRI images to test our model's robustness further.
- Integrating techniques like transfer learning or GANs might enhance our model's performance.
- We're focusing on enhancing model interpretability for clinician trust.
- We'll collaborate with medics for real-world feedback and model refinement.

REFERENCES

[1] "Trends in Australian knee injury rates: An epidemiological analysis of 228,344 knee injuries over 20 years," The Lancet Regional Health - Western Pacific, vol. XX, no. YY, pp. ZZ-ZZ, Apr. 2022.
 [2] H. Orthopaedics, "Anterior cruciate ligament tear," https://www.huangortho.com/ anterior-cruciate-ligament-tear, accessed: Aug. 9, 2023.
 [2] Sridhar S. Amutharai, L. Valaslar, P. Arthi, P. Bamluman, S. Mathurrius, S. Paiandran, T. and

- [3] Sridhar, S., Amutharaj, J., Valsalan, P., Arthi, B., Ramkumar, S., Mathupriya, S., Rajendran, T. and Waji, Y.A., 2022. A Torn ACL mapping in knee MRI images using deep convolution neural network with Inception-v3. Journal of Healthcare Engineering, 2022.
- [4] Wahid, A., Shah, J.A., Khan, A.U., Ullah, M. and Ayob, M.Z., 2020. Multi-layered basis pursuit algorithms for classification of MR images of knee ACL tear. IEEE Access, 8, pp.205424-205435.

[5] Hu, J. (2018) Squeeze-and-Excitation Networks [Preprint]. doi:

https://doi.org/10.48550/arXiv.1709.01507.

Thank You!!