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Abstract—Knee injuries, prevalent in athletic and aging popu-
lations, pose significant challenges to healthcare professionals due
to their complex nature and the critical function of the knee joint.
Early and accurate diagnosis is paramount to ensure effective
treatment and minimize long-term complications. Traditional
diagnostic methods, including physical examinations and imaging
techniques like MRI, require expert interpretation and can
sometimes be inconclusive. This study introduces an approach
to knee injury classification using deep learning techniques by
leveraging convolutional neural networks (CNNs) with Attention
Mechanism. This research work integrates powerful feature
extraction capabilities of CNN and feature refinement of attention
mechanism for the binary and multi-class classification of knee
MRI images, with the aim of accurately identifying specific knee
injury types. Based on our experiment on two comprehensive
knee MRI datasets, our custom CNN model achieved 88%
testing accuracy on Dataset-1 (Binary classification) and 77%
accuracy on Dataset-2 (Multi-class classification). Meanwhile, the
Attention-based CNN model achieved 100% accuracy on Dataset-
1 (Binary Classification) and 91% accuracy on Dataset-2 (Multi-
Class Classification). This approach not only holds promise for
enhancing diagnostic accuracy but also for reducing the time to
diagnosis.

Index Terms—Knee Injuries, MRI Knee Images, Deep Learn-
ing Algorithms, Attention Mechanism, Convolutional Neural
Networks(CNNs), Binary Classification, Multi-class classification,
Data augmentation, Radiologists.

I. INTRODUCTION

Knee injuries are a significant concern, especially in sports,
accounting for a major portion of severe injuries that lead to
prolonged absences from sports participation [1]–[4]. Specifi-
cally, ruptures in the anterior cruciate ligament (ACL) make up
over half of these cases, impacting around 200,000 Americans
annually [1], [5]–[7]. Additionally, knee cartilage issues affect
nearly 900,000 Americans each year, leading to over 200,000
surgeries [5]–[8]. Meniscal injuries rank as the second most
frequent knee-related ailment, with a 12-14% incidence rate
[9], and a prevalence of 60-70 cases per 100,000 in the UK.
The financial burden of ACL injuries alone exceeds $7 billion
in the U.S. [10]. Knee injuries are linked to both immediate
and long-term pain, disability, and a decline in overall health
quality [12], [13], [24]. Particularly, active young individuals
are at a higher risk of knee injuries due to their involvement
in intense activities, increasing their chances of developing
osteoarthritis (OA) [14]. Statistically, about half of those with
ACL or meniscal injuries will show signs of knee OA within
10 to 20 years post-injury [8], [15]. Other potential outcomes

of knee injuries include structural muscle injuries in the lower
limb [16] and tendinopathies [17]. These statistics highlight
the societal and economic implications of knee injuries, em-
phasizing the need for efficient and cost-effective diagnostic
methods.

A. Types of Knee Injuries

The anatomical structure of the knee joint is categorized as
depicted in Figure 1, according to the taxonomy presented in
[18].

Fig. 1. Taxonomy of knee joint anatomy.

In the provided illustrations, various knee injuries are de-
picted: Figure 2 showcases an ACL ligament injury, Figure 3
represents a PCL injury, and Figure 4 demonstrates an MCL
injury.

Fig. 2. Anterior cruciate ligament anatomy [31].

B. Traditional and Deep Learning based Approaches

Arthroscopy, traditionally used for diagnosing knee issues,
is limited due to its invasive nature, leading to MRI as a non-
invasive alternative. MRI, however, is challenging to interpret
and prone to human error, causing inconsistencies in knee
injury diagnoses [19]–[24].
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Fig. 3. Posterior cruciate ligament anatomy [32].

Fig. 4. Medial collateral ligament anatomy [33].

Recent advancements in deep learning have seen its ap-
plication in identifying ACL tears from knee MRI scans. In
their study, Sridhar et al. [29] applied a Deep Convolution
Neural Network using the Inception-v3 framework, achieving
a high training accuracy of 99.04% but a lower 95.42% in
testing. This gap suggested a notable overfitting in the model.
Meanwhile, Wahid et al. [30] adopted a multi-layer Convolu-
tional Sparse Coding technique, attaining 95% accuracy with
a dataset of 623 MRI images, which included various tear
types. However, the limitation in their study was the small
dataset size, which might have restricted the model’s potential
for higher accuracy.

These studies shed light on the potential of machine and
deep learning in medical imaging. Yet, they highlight the ne-
cessity for ongoing research and expanded datasets to improve
the precision and dependability of these models.

C. Our Contribution

Our study presents a method that merges Convolutional
Neural Networks (CNNs) with an attention mechanism to
highlight specific features. This model excels in multi-class
classification, identifying different tear types like “ACL”,
“FCL”, “MCL”, “Normal”, and “PCL”. To counter overfitting
and boost dataset variety, we employed data augmentation
strategies. Utilizing a vast dataset, our approach demonstrates
the effectiveness of the attention mechanism in enhancing
classification accuracy.

II. OVERVIEW OF ATTENTION MECHANISM

Attention mechanisms have become a pivotal concept in
deep learning, particularly in tasks that require the model to
focus on specific parts of the input data. The idea of attention
in deep learning is inspired by the human cognitive process of
selectively concentrating on a particular aspect of information
while ignoring others [25].

A. Concept of Attention

The basic idea of attention is to allow the model to weigh
different parts of the input differently. In a sense, the model
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Fig. 5. Base structure of attention module.

attends to certain parts of the input when making predictions or
representations, as illustrated in Figure 5. This is analogous to
how humans pay attention to specific details when observing
a scene or listening to a speech [26]. In deep learning models,
attention mechanisms can be implemented in various ways. A
common approach is to assign a weight to each part of the
input. These weights determine how much focus the model
should give to different parts of the input when making
predictions. The weights are often computed based on the
compatibility between the input and some context, such as
a query or another part of the input [27].

B. Squeeze-and-Excitation Network
The Squeeze-and-Excitation Network (SENet) [28] in-

troduces an attention mechanism to adaptively recalibrate
channel-wise feature responses in a convolutional neural net-
work. This recalibration is achieved by explicitly modeling the
interdependencies between channels of the convolutional fea-
tures. The core idea is to use global information to selectively
emphasize informative features and suppress less useful ones
in a channel-wise manner. The SE block can be divided into
two steps: the squeeze operation and the excitation operation
as illustrated in Figure 6.
Squeeze: This operation captures the global information of
the feature map. It involves global average pooling which
compresses the spatial dimensions H×W of the feature map,
resulting in a 1D vector of size C (number of channels).

zc =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j) (1)

where uc is the input feature map and zc is the output of the
squeeze operation for channel c.

Excitation: This operation captures channel-wise dependen-
cies. It involves passing the squeezed 1D vector through two
fully connected (FC) layers, the first acting as a bottleneck
and the second producing the scaling factors. Between these
FC layers, a ReLU activation function is applied, and after the
second FC layer, a sigmoid activation is applied to obtain the
scaling factors in the range between 0 to 1.

sc = σ (W2δ (W1zc)) (2)

where σ is the sigmoid function, δ is the ReLU function, and
W1 and W2 are the weights of the two FC layers.



Fig. 6. A detailed diagram of the squeeze and excitation network with proper
dimensions and the different operations.

Finally, the original feature map uc is scaled by the output sc
of the excitation operation:

ũc = sc · uc (3)

where ũc is the recalibrated feature map.

III. PROPOSED METHODOLOGY

Our methodology for ACL tear detection in knee MRI
images combines Convolutional Neural Networks (CNNs)
with attention mechanisms. The attention layer, placed right
after the initial convolutional layers, was chosen through a mix
of theoretical analysis and empirical testing. This positioning
allows the layer to effectively refine early-stage features,
enhancing the model’s precision in detecting subtle variations
in knee injuries. We opted for the SENet attention layer due to
its proficiency in medical imaging, particularly for its channel-
wise feature recalibration capabilities. Crucially, during train-
ing, the attention mechanism learns to focus on the most
pertinent features for each knee injury class, such as ACL,
FCL, MCL, Normal, and PCL. This adaptive learning, based
on the correlation between input features and class labels,
sharpens the model’s ability to distinguish between various
injury types, thereby improving its accuracy and efficiency.

In this section, Tables I and II detail the configurations of
our CNN 7 and Attention-based CNN architecture 8 for both
binary and multiclass classification, respectively. These tables
highlight key aspects such as batch sizes, trainable parameters,
optimizer choice, and loss functions, offering a clear view of
our model’s architecture vital for ACL tear detection.

A. Attention Module

Given an input feature, the attention block illustrated in
Figure 8 can be mathematically represented as follows:

Let the input feature be represented as I .
1. The gating signal g is computed as:

g = ReLU(Wg ∗ I + bg)

g = ReLU(W ′
g ∗ g + b′g)

TABLE I
CNN ARCHITECTURE CONFIGURATION

Parameter Value
Total Parameters 7,757,509
Trainable Parameters 7,757,509
Non-trainable Parameters 0
Batch Size 32
Optimizer RMSprop
Loss Function Categorical Crossentropy

TABLE II
ATTENTION-BASED CNN ARCHITECTURE CONFIGURATION

Parameter Value
Total Parameters 21,736,229
Trainable Parameters 21,730,725
Non-trainable Parameters 5,504
Batch Size 32
Optimizer RMSprop
Loss Function Categorical Crossentropy
SENet Reduction Ratio 8

where Wg and W ′
g are the weights for the two convolutional

layers applied to the gating signal, and bg and b′g are the
corresponding biases.

2. The transformation x of the input tensor is computed as:

x = ReLU(Wx ∗ I + bx)

x = ReLU(W ′
x ∗ x+ b′x)

where Wx and W ′
x are the weights for the two convolutional

layers applied to the input tensor, and bx and b′x are the
corresponding biases.

3. The attention coefficients ψ are computed as:

ψ = σ(x⊙ g)

where σ is the sigmoid activation function and ⊙ denotes
element-wise multiplication.

4. The output of the attention block is:

O = I ⊙ ψ

B. Squeeze-and-Excitation Block

In our model architecture, as visualized in Figure 8, we’ve
adeptly incorporated the principles of attention, as elucidated
in Subsection II-B. The attention mechanism, which allows
models to assign varying importance to different parts of the
input, has been embedded at strategic points in our design.

Specifically, we’ve employed spatial attention in our second
block, where the model refines its focus on specific spatial
hierarchies within the input. This is akin to how humans
selectively concentrate on certain aspects of a visual scene.

Furthermore, the Squeeze and Excitation (SE) channel at-
tention has been integrated into the third, fourth, and fifth
blocks of our architecture. This mechanism refines the features
by allowing the model to weigh the importance of different
channels, ensuring that the model captures global contextual
information from the input.



The amalgamation of spatial and SE channel attention in
our architecture ensures that the model is not only sensitive to
where specific features are but also to the interplay between
different features across the channels. This dual attention
strategy, rooted in the concepts described in Subsection II-B,
enhances the model’s ability to extract and refine features,
leading to improved performance.

C. Framework of Proposed Method

In our research, we employed a variety of methods to ensure
the robustness and accuracy of our findings:
We designed a custom Convolutional Neural Network tailored
to the specific features and nuances of knee MRI images in
Figure 7. This network allowed us to capture intricate patterns
from input knee MRI images.
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Fig. 7. CNN architecture for binary and multi-class classification.

In Figure 8, we present the attention-based CNN architec-
ture tailored for both binary and multi-class classification of
knee injury.

Our model employs convolutional layers to discern spatial
patterns. The attention block refines the model’s focus on
pivotal input regions, enhancing prediction accuracy. Mean-
while, the Squeeze-and-Excitation block recalibrates channel-
wise responses, amplifying crucial features. Together, these
blocks ensure the model’s attentiveness and adaptability to
diverse data nuances.

IV. EXPERIMENTAL ANALYSIS

Our model utilizes two key attention mechanisms to identify
different knee injuries from MRI images. The Squeeze-and-
Excitation (SE) block in Figure 8 enhances channel-wise
feature analysis, recalibrating each channel to highlight more
significant features. Additionally, a custom spatial Attention
block in Figure 8 refines the focus on specific areas within
the images, using convolutional layers to generate and apply
gating signals. This combination effectively distinguishes be-
tween injury types like ACL, FCL, MCL, Normal, and PCL,
enabling precise and accurate classification.

A. Datasets

In our research work, we have collected two different
datasets one is “BMEII-AI RedImageNet” and another is
“RedImage”. Where the first one contains a total 1021 images
of both “ACL” and “NORMAL” classes.On the other hand,
the second dataset contains 23,780 images of five classes(ACL,
FCL, MCL, Normal, PCL). Both datasets contain RGB images
of dimension 256× 256× 3.

TABLE III
GROUND TRUTH CLASS FOR DATASET-1 (BMEII-AI REDIMAGENET)

Class Samples
ACL 512

Normal 407

TABLE IV
GROUND TRUTH CLASSES FOR DATASET-2 (REDIMAGE)

Class Samples
ACL 10,085
FCL 466
MCL 7,911

Normal 4,593
PCL 725

B. Data Augmentation

Data augmentation involves artificially increasing the size
of a training dataset by transforming the original images in
various ways. This method is crucial for mimicking real-
world conditions and combating overfitting, particularly when
data is scarce. In our model, to enhance its robustness and
diversify the training data, we implemented a range of data
augmentation techniques. These included rotations, shearing,
zooming, and horizontal flipping, all aimed at replicating
different real-world situations and reducing overfitting.

C. Evaluation Metircs

To comprehensively assess the performance of our knee
injury classification model, we employed a suite of evaluation
metrics, each offering a unique perspective on the model’s
capabilities:
Accuracy: This metric provided a straightforward measure of
the model’s overall correctness. It quantified the proportion
of total predictions that were correct, serving as an initial
indicator of the model’s efficacy.

Accuracy =
True Positives (TP) + True Negatives (TN)

Total Predictions
(4)

Precision: Assesses the model’s accuracy in identifying
positive cases, calculated as the proportion of true positives
out of all positive predictions.

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
(5)

Recall (Sensitivity): Determines the model’s ability to
identify all possible positive cases, defined by the ratio of
true positives to the total of true positives and false negatives.

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)
(6)

F1-Score: Represents the harmonic mean of precision and
recall, providing a balanced view of the model’s performance,
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Fig. 8. Attention-based CNN architecture for binary and multi-class classification.

particularly useful for imbalanced class distributions.

F1-Score = 2× Precision × Recall
Precision + Recall

(7)

D. Performance Evaluation

According to Table V, it is evident that the integration of
attention mechanisms with our Custom CNN model has led
to significant improvements in all evaluation metrics for both
binary and multi-class knee injury classification. For binary
classification, the accuracy, precision, recall, and F1-score all
reached a perfect score of 100% with the attention-augmented
model, compared to 88% without attention. Similarly, for
multi-class classification, there was a notable jump from 77%
to 91% in accuracy, and consistent improvements in precision,
recall, and F1-score.

The substantial enhancement in performance can be at-
tributed to the attention mechanism’s ability to focus on the
most relevant features in the input data, thereby allowing
the model to make more informed decisions. This selective
focus is especially crucial in medical imaging, where subtle
details can be the difference between accurate and erroneous
diagnosis.

Furthermore, when comparing our model’s performance to
the state-of-the-art DCNN combined with InceptionV3 [29],
as shown in Figure 9, our attention-augmented Custom CNN
outperforms the benchmark in both binary and multi-class sce-
narios. This underscores the efficacy of attention mechanisms
in enhancing the discriminative power of convolutional neural
networks, especially in complex tasks such as knee injury
classification.
Comparison of Both Binary and Multiclass Classification in
Figure 9.

V. CONCLUSION

Our research underscores the transformative potential of
advanced neural networks in medical diagnostics, particularly
for knee injury classification. By employing an Attention-
based CNN architecture, we achieved a remarkable 100%

Fig. 9. Comparison between various models for binary and multi-class
classification.

accuracy in binary classification, outperforming the traditional
CNN’s 88%. Utilizing the Attention-based CNN architecture
for multi-class classification, we attained an accuracy of 91%,
surpassing the conventional CNN’s accuracy rate of 77%.
This success is attributed to the model’s ability to prioritize
diagnostically relevant features within MRI images. As the
medical domain progresses, the integration of such tailored
deep-learning techniques will be crucial, offering promising
avenues for future research and improved diagnostic precision.
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